Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

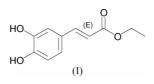
Chun-Nian Xia, Wei-Xiao Hu* and Guo-Wu Rao

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.034 wR factor = 0.103 Data-to-parameter ratio = 12.8


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 3-(3,4-dihydroxyphenyl)-2-propenoate

The title compound, $C_{11}H_{12}O_4$, was prepared from the Knoevenagel condensation reaction of 3,4-dihydroxybenzaldehyde and monoethyl malonate. The almost planar molecule is the *E* isomer. Received 19 April 2004 Accepted 23 April 2004 Online 30 April 2004

Comment

Caffeic acid and its derivatives are widely distributed in the plant kingdom (Chen *et al.*, 1999). These compounds are known to have antiatherosclerotic, antibacterial, anti-inflammatory, antiproliferative, immunostimulatory, antioxidative, antiviral and neuroprotective properties (Son & Lewis, 2002). In a continuation of our search of structure–activity relationships in caffeic acid derivatives, we have obtained the title compound, (I), as a product of the Knoevenagel condensation reaction of 3,4-dihydroxybenzaldehyde and monoethyl malonate.

The molecular structure of (I) is illustrated in Fig. 1. Its configuration is the *E* form. Selected bond lengths and angles are listed in Table 1. All non-H atoms of (I) are almost coplanar, deviating from the least-squares plane within 0.0564 (15) Å.

Experimental

3,4-Dihydroxybenzaldehyde (5.6 g, 20 mmol) and monoethyl malonate (13.6 g, 100 mmol) were dissolved in a mixture of pyridine (15 ml) and piperidine (0.5 ml). The solution was stirred at room temperature for 24 h and dried *in vacuo* to give a dark-brown mixture. The cooled mixture was dissolved in dry ether (30 ml), washed with saturated NaHCO₃ solution, then dried with anhydrous MgSO₄. The solution was filtered and concentrated to yield a brown crystalline product (6.6 g, 78.6%). Recrystallization from ethanol gave light-brown crystalline prisms (m.p. 420–421 K).

Crystal data

-		
$C_{11}H_{12}O_4$	$D_x = 1.375 \text{ Mg m}^{-3}$	
$M_r = 208.21$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 25	
a = 6.659(1) Å	reflections	
b = 5.811(1) Å	$\theta = 9.9 - 13.9^{\circ}$	
c = 25.992 (7) Å	$\mu = 0.11 \text{ mm}^{-1}$	
$\beta = 91.51 \ (2)^{\circ}$	T = 293 (2) K	
$V = 1005.4 (4) \text{ Å}^3$	Prism, light brown	
Z = 4	$0.35 \times 0.30 \times 0.25 \text{ mm}$	

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.964, T_{max} = 0.974$ 2218 measured reflections 1792 independent reflections 1373 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.103$ S = 1.081792 reflections 140 parameters H-atom parameters constrained $\begin{aligned} R_{\text{int}} &= 0.021\\ \theta_{\text{max}} &= 25.2^{\circ}\\ h &= -7 \rightarrow 7\\ k &= -1 \rightarrow 6\\ l &= 0 \rightarrow 31\\ 3 \text{ standard reflections}\\ \text{frequency: 60 min}\\ \text{intensity decay: } 0.3\% \end{aligned}$

$w = 1/[\sigma^2(F_o^2) + (0.0)]$	$(0513P)^2$
+ 0.2394P]	
where $P = (F_o^2 +$	$2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$	
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^-$	-3
Extinction correctio	n: SHELXL97
Extinction coefficient	nt: 0.010 (2)

Table 1

Selected geometric parameters (Å, °).

O1-C2	1.3568 (17)	O4-C9	1.3296 (18)
O2-C3	1.3637 (16)	O4-C10	1.4491 (16)
O3-C9	1.2154 (18)	C7-C8	1.319 (2)
O1-C2-C1	123.72 (13)	O2-C3-C2	115.98 (13)
O1-C2-C3	116.70 (12)	O3-C9-O4	122.57 (13)
O2-C3-C4	124.02 (13)	O3-C9-C8	123.47 (14)
-			

H atoms were included at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms, and C-H distances were set to 0.93 Å for H atoms bonded to the benzene ring, 0.96 Å for

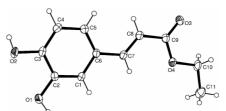


Figure 1 View of (I), with 30% probability displacement ellipsoids.

methyl H atoms and 0.97 Å for the remainder. O–H distances were fixed at 0.82 Å.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Chen, W. K., Tsai, C. F., Liao, P. H., Kuo, S. C. & Lee, Y. J. (1999). *Chin. Pharm. J.* **51**, 271–278.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Son, S. & Lewis, B. A. (2002). J. Agric. Food Chem. 50, 468-472.